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NOMENCLATURE

A = (cosh2¢ - cos2n)

a,pb = semi-major and semi-minor axes of the
ellipse with & = g,

2c = interfocal distance of ellipse

cez(n,—q) = Mathieu function of'the first kipd, of
the order of 2, defined by Equation (Al.6)

E = Young's modulus

e = eccertricity of ellipse

it

Fek2 = Fekz(g,-q) k-type modified Mathieu function of the
second kind, of the order of 2, which is

defined by Equation (Al.4)

)
] = 2 -
32
(Fek,) " = SIFek,(£,-q)]
~ o€ -
F = F/(c/2)?
H,B,C,D,E,F M = guperposition constants
hl'hZ = scale factors
In(z),Kn(z) = modified Bessel functions cf the first and

second kinds, respectively, where n de-
notes order

U = the Jacobian of transformation
_ 12 _1lc¢
k - T2
L = couple-stress characteristic length
y T
M =
"B
P = uniaxial uniform load
(p.) " =ce, (0,q) co, (X g/ 2)
P2 210 Eepiy Ay
f 1iL

| %
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r,¢

se, = sez(n,-q)

(sez)'

(sez) "

X,y

a,B

P B O T el P W T L e R WL T T TR SR T KR R TR TN BT RO R R T Bl s at 4 P TR -

1 (i) 2 2
lflffl = k. Here q is the real posi-

ive hum*rer

semi-major and semi-~minor axes of any
ellipse

polar coordinates

Mathieu function of thz2 first kind, of the
order of 2, which is defined by Equation
(A1.5)

9

gﬁ[sez(n,-q)

32

m[sez (n,-q)

Airy stress function

Cartesian coordinates

orthogonal curvilirear coordinates

defined by Equation (3.35)

defined by Equation {(AIII.17)

the inclination of the curve B = a constant
to the x-axis in orthogonal curvilinear
coordinates (a,B)

modulus of rigidity

couple-stress compc .ents in Cartesian
coordinates

couple-stress components in orthogonal
curvilinear coordinates

couple-stress components in elliptical
coordinates

Poisson's ratio

ke "

keE

elliptical coordinates

stress components in Cartesian coordinates

iv
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stress compenents in orthogonal curvi-
linear coordinates

stress components in elliptical coordi-
nates

couple-stress function

local rigid rotation




TR

1)
;
H
‘
¢
¥
4
¢
:

1.0 INTRODUCTION

1.1 Objective of Research

The objective of this research is to obtain solutions
for an infinite tension p..ate bounded at the interior by an
elliptical hole. The nominal tension in the plate is uniform
along the majo. axis (see Fig. 1l). The conuple-stress effect
is considered. Two limiting cases for the problem are for
the ellipticity of 0 and 1 for the interior boundaiy. That
is, for the first case the interior boundary is a circle, for
the second case, a crack along the major axis. Of course, the
problem of a crack is the major interest of the research. The
present investigation includes a study of a class of solutions
which satisfies the static equilibrating traction on the

interior boundary.

L%

!

*
, (9]
L

Ly iy oy e

\_—-—/_—_‘

cosh =a
c EO

c flgé £o=b
€ =3

Figure 1.



1.2. Review of Pertinent Literature

The origin of couple-stress theory of elasticity is

e ag T8 SRR RN

attributed to E. and F. Cosserat, with modern developments by
Truesdell, Toupin, Gricli, and Aero and Kuvshinskii. A dis-
cussion of the origin and development of thz coup'e-stress
theory is given by Mindlin and Tiersten [1].

Recently, specific plane problems in couple-stress elas-~
ticity have been studied by many investigators. The foallowing
%ﬁ a list of those studies which are related to the »resent
problem. Mindlin [2] found the couple- stress effects on the
stress concentration factors for a circular lole 11 various

two-dimensional fields of stress when the diam2ter of the hole

is comparable in size to the couple-stress ccustant L.

Weitsman [3], [4] generalized the solution to the cases of ci1-
indrical inclusion in fields of cylindrical symmetric 2nd uni-
axial tension, respectively. Scternberg (5], [¢] fourd the
effect of couple-stresses on tle stress concentration «roand a
crack bj; assuuing that the stress singularitices at the crac..-

: tips are c¢f the same order as those in the weli--known c¢lassi-

cal solutions. An earlier report by Ju and Hsu [7] (AFOLE~-&9-
1908 TR) contains a comprehensive review of the theory and the
basic equations for the plane problems. All pertinent nota-
tions and definitions, therefore, will be referred to [7] to

avoid repetition.

N
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2.0 TWO-DIMENSIONAL COUPLE-STRESS THEORY

The approach toward the solution of a crack problem may
be either by means of the degeneration of an elliptical hole
(71 or by the use of a half-plane [5]. The choice of using an
elliptical hole has the advantages of (a) no a priori assuvmp-
tion, (b) ready check for the problem of a circular hole [2],
(c) ready check for the classical solution [8]. In order that
the boundary may be described by a coordinate line, the ellip-
tical coordinate is used. Hence, all equations for the
couple~-stress theory of elasticity are expressed in such co-

ordinates in this problem.

2,1. Rectangular Cartesian Coordinates

According to Ju and Hsu [7]* or Mindlin [2], the field
equations of two-dimensional couple-stress theory in a state
of plane strain without body forces or body couples are given
ac follows:

U and ¥ must sataisfy

V4U

1
o

(2.1)

and

v2(y - 2°v%y)

i}
o

(2.2)

respectively, where % is the couplr-stress characteraistic

length so that 22 1s the ratio of the Cosserat modulus to the

*
Numbers 1in brackets designate references ot end of the

report. Equations in Section Z.1l refer to Equations (1.40)
through (1.51) in [7].
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modulus of rigidity (u) [7]. U and Y must alsc be related to

each other by the Cauchy-Riemann equations

242y

0 293 ,.2
'5-}-(-(\1’ L 2(1 v) R W(V U)
(2-3)

292y

d 2 3 .2
5§(v L 2(1 v) L gi(v U)

Stresses, couple-stresses, displacements, and rigid-body rota-

tion are expressed in terms of the two generating stress func-
tions U and Y as follows:
s - 82U _ BZW
XX Byj Xy
_s%u oy
o = — + =
vY 3x2 IXay
2 2
o = - 9L 3
Xy axXaoy ay2
(2.4)
yx 0XJy 8x2
= Y
Mx X
y oy
2.2. Orthogonal Curvilinear Coordinates
To generalize the results [2], [7] which are derived for
] rectangular Cartesian and polar coordinates, consider thouse
4
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for the general two-dimensional orthogonal curvilinear co-
ordinates (a,B). The two generatina stress functions U(a,B)
and ¥Y(o,B) must satisfy (2.1)* and (2.2), respectively. Here
the Laplacian operator, V2, and the biharmonic operators, V4,
are expressed ia terms of orthogonal curvilinear coordinates

¢ and B8.

and (2.5)

where hl and h2 are scale factors in o and B, respectively.

The Cauchy-Riemann equations (2.3) can be transformed to o

and B cooxrdinates by use of the chain rule that

o _ 20 3, 98 3
X 0x da dx 0B
(2.6)
.8_.=a_a_a—+§—8-_a_
Yy dy oo dy 48

The stresses, couple-stresses, displacements, and rigid-body

rotation are expressed 1n terms of U and V¥ as follows:

* , .
Numbers in parentheses are refeiences to equations in
the text.

L
E o
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2.3.

lated

— ——— o .- e a = PR

2
2 h] 3h oh 2
2y 17200, 200, %Y
2 2 h, 3o da 2 38 238 172 3098
a8 2
. ahl 3y _ N ah2 ¥
2 3B a 1l 30 3
2 oh h2 oh 2
=02 30 4 p 10 _ 2 13U, oy, 3%
1 aai 1l 3a 3da hl 0B 98B 172 5adB
. n ahl Ay, N ah2 ¥
2 98 o 1l 39a 9
P i A U 1 I 1
172 3098 2 9B 9da 1 3a 9B
12.7)
2, 1% sn 3h
_hz__..a‘y.n-__l.___.z.é_‘{i-h_._zgi
2 38 2 a0 0. 2 38 OB
o, 20 o Pae 0 a0
172 3038 2 98 da 1 30 3
2 3h h? sh
+ h2 oY, h 19y _ 72771 a¢
1., 2 1l %0 da h, 88 98
a0 1
]
ST
R
hy 58
Elliptical Coordinates
The elliptical coordinates £ and n (see Fig. 2) are re-

to the rectangular cartesian coordinates x and y by
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¢ coshf cosn
] (0 < £ <> 0 <N <2 (2.8)
¢ sinh§ sinn

%3
]

n=270°

Figure 2,

Here the curves £ = constant and n = constant form an orthog-
onal system of confocal ellipses and hyperbolas, with the com-
mon foci being the points (t¢c,0. Figure 3 shows two .imiting
cases when the ellipticity e is 1 and 0, respectively.

The Jacobian of transformation is

ox 3x
: ag 9n
i = ox,y) _ _ .2 2, _ 2
; J 3737%7 c” (cosh™ ¢ cos'n)
; dy 3y
; dE on

At £ =0, n=0o0r m, J = 0. Hence the only swingular points
of the transformation are located at the foci (*c,0). The

scale factors hE and hn can be calculated by




and

:sa.wl"‘
!
3]
+
Q
=

as

; hy = h = (2.9)
i n g/cost.2E - cos2n

. : This denotes that

A = (coshz; - cos2n) (2.14)

(L
0 S \\\\\:i $ I X
E
E e=1 e=0
f (a) (b)

S Y

{ Figure 3.

The following quantities involving hE and hn are
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3
oh 3h -
Efé = EEH = - A 2 sinh2g
3
ahg _ ahn _ /i-A-f 5
oo -~ ¢ A simn
; 2 _,2_ 2 -1
E hE—hn_:fA
i (2.11)
| 1
h, =h =224 2
£ n c
: oh
g n 2 -2 .
. h, =—==h, —/— =-S5 A sinh2§
. £ T e 3% 22
oh
£ _ _n__ 2 ,-2
hn e hE T ;7 A sin2n
Equation (2.5, becomes, by use of (2.9) and (2.10),
V2= 2 & _a.._...
?Zl.agz an
(2.12)
vdu = v

bbb A o2

The Cauchy-Riemann equations (2.3) can be transformed to

elliptical coordinates £ and n by use of (2.6) with o = ¢,

MRANLARE 1 T O TR I ARV g TR 4 PSS Y ST N M U e M 48

B=n
3 20200 o1 - uye2 B o2
AR SR VI TR SERV PR “Y )
E (2.13)
1 ; .
S 3 202¢) = 201 - v22 v

gﬁ(w - 27V7Y) 3E
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Similarly, stresses, couple-stresses, displacements, and

rigid-body rotation are expressed in terms of elliptical

coordinates by use of (2.7) and (2.11).

2
2 -1 37U 2 -2 . U 2 -2 oU
O, = A + — A sinh2f = - A sin2n ——
£EE ;2 _TM o2 e 2 on
2 -1 3%y 2 -2 2Y 2 -2 3y
- :2. A TEam + ;2- A sin2n 3 + = A sinh2¢ n
C
(z.14)
2 -1 3%u 2 U 2 -2 sU
o] = — A = - — A sinh2f — + —< A sin2n —
nn c2 g2 c2 3t c2 on
+ 2 A-l az‘y -2 A sin2n ¥ _ 2 A—2 sinh2¢ of
2 dEaNn 2 9k 2 an
c c c
{2.15)
2 -13%u | 2 U 2 =2 3u
c&n = -71\ SEm +-—-2-A 51n2n§-€+-ﬁ-A 51nh2§-ﬁ
c c c
- ZA'lﬁ— 2 A2s1nh2£§—\£+£-A_2 sm2nif-
;2' an2 ;7 3¢ c2 on
(2.16)
o . =-22at 2%y + 2272 sin2n &8 4+ 2 472 ginn2e U
ng o2 3gon 2 TR N
+ 2 a7t 2%y 2 272 sinh2e & + 2472 ginap &
;7.' 352 02 & c2 an
(2.17)
1
2 {2y 2 3Y
“g = =i A 5E (2.18)
% 1
- (2) 2 3y
un = c A 3 (2.19)
10
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Components of stress and couple-stress in elliptical coordi-

; nates are shown in Fig. 4.
y
A Direction of
n-incr ing
Direction of
E-increasing
!
i
0 T X

Figure 4.

EWTUY. AW

2.4. Boundary Values of the Problem

The couple-stress solutions are obtained for the uniform
tension plate bounded at the interior by an elliptical hole.
The nominal tension p is parallel to the major axis. For the
present general class of problems, the boundary conditions at

the elliptical hole are

an 2.20
logg - ]wl(n)dn =0 (2.20)
o

o n=n

11

b
1
3
3
B
§
pe
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[Oﬁn wz(n)dn =0 (2.21)
£t J
o n=n
(2n [
U w,(n)dn = 0 (2.22)
R 5|5=eo] 2
|n=n

where* wl(n) and wz(n) are some weighting functions defined on
the interior boundary.

The regularity conditions at infinity are

P,0® = g® = g® = |

Gxx Xy vx ; =0 (2.23)

g =
Yy

x
wl(n) = cez(n,-q) and wz(n) = se,(n, -q)

12
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3.0 SOLUTION OF THE PRO3LEM

3.1. Selection of Stress Functions U(f,n) and ¥(E,n)

As U(E,n) is biharmonic in (2.1), with V? taking the

form of (2.12), we choose five solutions of U(E,n)

U, = e2E + cos2n

u, = e %% 4+ cos2n

U, = e 2% cos2n (3.1)
U4 =t

U5 = e2£ cos2n

[}

The selection of these fundamental biharmonic functions is
based on the same argument as that used by Filon and Coker [8].

Notice that (2.2) can be rewritten as

v2(y - 22vy)

n
(=}

(3.2)

and

(1 - 22v2)v2y

0
o

(3.3)

From (3.2), we obtain the wave-function solution as the
products of two types of Mathieu function (see Appendix I).

Here we choose

Wz = (Fekz)(sez) (3.4)

13
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Equation {3.3) implies that one solution of ¥ is harmonic, Y-
Fur thermore, Cauchy-Rizmann equations (2.13) concluae that
this harmonic ¥ and 2(1 - v)!LzVZU must be conjugate harmonic
functions (2]} (7). As such, ¥y is selected with U in (3.1),

as

= sin2n .
‘!'1 ~ (cosh2E - cos2n) (3.5)

Finally, U and Y are formulated by a superposition of stress

functions given in (3.1), (3.4), and (3.5).

U = H'll + 802 + CU3 + DU4 + 1.'-:U5 (3.6)

% ~ -~
¢ Yy = F\Pl + M‘Pz (3.7
¢
!
3.2. General Expressions of Stresses and Couple-Stresses
Define o,, , © , O , O , U, , and u_ equivalent
' to U; for i =1,2,3,4, and 5 and \P(i—S) for i=6 and 7. Thus
r we have
{ ~ .
: 0,,= Ho + Bo + Co + Dg + Eo + Fo + Mo \
] EE” gy £E, £Eq EE, EE, EE, £E.
:
¢ ~
i g _= + + + )
{ n Honnl Bcrrm2 Conn3 D(er‘1 + Fonns + F(er6 + Monn7
é -~ ~
¥ 0_, =Ho + Bo + Co + Do + Eo + Fo + Mo

né ngy né, n€3 ng, nEs n€6 né,

o, =Ho, + Bo, +Cc,. + Do, + Eo, + Fo + Mo
i En En En En En En En En
: 1l 2 3 4 5 6 7

14
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Hyuy + Bu + Cu + Dy + Eu + Fyp + My
£ £ 3 13 3 1 £
1l 2 3 4 5 6 7

. . (3.8)
U_ = Huy + Bp + Cu + Du + Eun + Fun + My

n " ) N3 Ny 5 € Ny

Some important quaatities are calculated by the use of (2.14)
to (2.19), and by the use of (2.12) equivalent to Ui for
i=1+to5 and YI,TZ. The results are listed as follows
(however, soms of them, which are independent of couple-

stress, have been worked out in Filon and Coker [81%).

\

o =4 A-2[2 cos4n - 8 cos2n cosh2f + 4 + 2e4£]
EE; 2
o = JL-A-2[2 cos4n - 8(c052n)e2£ + 4 + 2e€]
nnl £
c
Oen. = g = J% A"2[4 sin2n cosh2¢}
1 1l c
u =y =0 $ (3.9)
-1
VZU =L A [eZE - cos2n]
1 2
c
902 _ _ 16 -2 . .
sﬁv U1 = ;7 A “[sin2n sinh2g)
9 o2 .16 =2 _
5Ev Ul = ;7 A “{1 cos2n cosr.lt]

x
See Equations (6.22331) to (6.2363) and (6.2421) to
(6.2423) on pp. 541 anl 543, respectivelv.

15
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For UZ' we have

_ 1 =2 -4t )
o = = A “[2 cosdn - 8 cos2n cosh2f + 4 + 2e ]
£&, o
G = —12- A—2[2 cos4n - 8 coszne"25 + 44+ Ze““]
nnz c
E
1 -2 .
: oEn = ong = =5 A “[~-4 sin2n cosh2t]
: 2 2 c
f : Pe, = i, T 0 7(3.10)
? ¢ 2 8 -1, -2¢%
3 : V°u, = — A "[e T - cos2n]
1 2 2
t c
1
3 g2y, = 18 472 ginan sinh2¢&
3 an 2 c2
292y, = - 18 A-zll - cos2n cosh2¢£])
o0& 2 02 |

For U3, we have

\

; Opp. = -2-2— A %[cosdn + e 2% - cosan(e”?t + 3) + 3728
i "3 ¢
; - - - -4£
i : o = -%-A 2[-cos4n ‘e 2¢ 3e 28 + cos2n{e 4’+3)]
) »
! o, =0, =2 2" %[sindn * e 2% - sinante™% + 3)1 |(3.11)
: gn ng 2
y 3 3 c
. _ _ g2 _ 0 2 _ 9 2, _
: =y —VU3—QT]VU3—3EVJ3-0

=
Al
(98]
3
(%

16
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For U4, we have

Oep = L 27?12 sinh2g)

“54 c

¢ = -L a"%[-2 sinh2§]

nn4 c2 >
- = .l_ -2 3

°£n4 = 0n54 cz A “[sin2n]
U S T S W S

ug, = ¥, o, = 2 VU, = 5 VU, oJ

For US' we have

o = —l-A-Z[Z cosdn * ezg - cosZn(Ze4€ + 6) + 6e2
E’gS c2

o =L a?[-2 cosdan - e28 4+ cos2n(2e?t 4+ 6) - 6e
rm5 c2

g =g =L A_z[-z sindn ° e28 4 sin2n(2e45 +
Ens né. c2

= = 2 = a— 2 = .é_ 2 cz
ue = un v U5 n v U5 = 3E v U5 0
5 5

Forx Wl, we have

4] = l% A¢4 sinh2g [l + sin22n - cos2n cosh2g)
EEG c

12 -4 . .2

o] = =5 A sinh2£([1 + sin“2n - cos2n cosh2g]

nn6 c
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o =g = lz-A-4 sin2n[sinh226 -1
Eng nEg c2

+ cos2n cosh2f]

F uoo= - 272 NG [1 - cos2n cosh2g]
Ne c
!
! u. = - 2/2 a™3/2 [sin2n sinh2g)
6 c
2 =
v Wl =0
.
1
! 2,2, _ -1 _,
Wl v Wl = A sin2n
3 2.2 -2.
| f%‘*l - 479%¥,) = -2A “[1 - cos2n cosh2g]
3 2.2 e aa— 2 .
i 53‘*1 L7V7¥ ) = -2A "[sin2n sinh2g]

For Y., we have

0€€7 - g 5[-7.(Fek,) ' (se,) " + (Fek,)'(se,) sin2n
CcC A
+ (Fekz)(sinhZE)(sez)']
= - 2 - ' ' . .
onn7 = c2A2[ A(Fekz) (sez) + (Fekz) (Sez) sin2n

+ (Fekz)(sinh2€)(592)']

18
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-

i
IS
<]

N
-
1}

b
. = S p——

3 \ - ] 3
+ (Lekz (bez) sin2nl

l-{A(Fekz) "(se,) - (sinh2f) (Fek,)' (se,)

c?n’

+ (Fekz)(sez)' sin2n]

1/2
112 ,
EiXJ (Fekz) (sez)
1/2
142 .
cl5) (Feky) (sey)
3 2.2
ity - V)
3 2.2, . _
-—ag(\v?_ - 2575 = 0

+ D{sinh2g] +

19

(2.14) to (2.19), the results are as follows:
2 \ . 4t
g,, = —=—={H[cosan - 4 cos2n cosh2f + 2 r e
£& 2,2
Cb‘\
f + Blcosdr - 4 cos2n * e 25 4+ 2 + o748

Suhstituting the expressions in (3.9) to

]

‘—chz [-A(Fek,) (se)) " - (sinh2f) (Fek,) ' (se,)

Ll

(3.15)

(3.15) into

+ C[cosd4n - e %8 cosZn(e-4€ + 3) + 3e-2€]




S el

nn

+ Efcos4n - e2€ - cos2n(e4€ + 3) + 3e251

- F[j% sinh2£(1 + sinZ2n - cos2n cosh2£)]
A

v M[-A(Fekz)'(sez)' + (Fekz)'(sez)sinZn
+ (Fekz)sinhZE(sez)']}

—2——{H[cos4n - 4 cosZne25 + 2 + e4€]
02A2

—-DF —
+ Blcosdn - 4 cos2ne 2 + 2 + e 4€]

- Clcosdn e 28 4 30726 . cosZn(e—4€ + 3]
- D[sinh2&]

- E[cosédn - ezg + 3e2g - cos2n(e4¢ + 3)]

+ F[j% sinh2g& (1 + sin22n - cos2n cosh2§) ]
A

- ﬁ[—A(Fekz)'(sez)' + (Fekz)'(sez)sinZn
+ (Fek2)sinh2£(se2)']}

2

c?a?

{2\ - B)[sin2n cosh2f]

+ Cl(sindn - e 26 - sinzn(e—4€ + 3)]

+ D[sin2n])

29
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, '";z—¢ qinngc{quzr - 1 + cos21w cosh2¢))
+ ﬁ[~A(Fek2)(se2)" - sinhZE(Fekz)'(sez)
+ (Fek,) (se,)' sin2n}]} (3.18)
Sne O * c—%z MIA(Fek,) " (se,) + A(Fek,) (se,)"] (3.19)
b = -——:;—§~/~2-{—2.§5(sjn2n sinh2] + MIAZ (Fek,) ' (se,)])  (3.20)

U= <~¥g-(~2F[l - cos2n cosh2¢] + M[AZ(Fek ) (se))']1} (3.21)
n CA~5/2 2 2

Tre =even unknown cooflicionts ', B, ¢, D, R, *, and M 1in
(3.15) to (3.21) will be determined by using boundary condi -
. * . . . .

tions at £ = EO, Cauchy-Riemann equations, and regularity

conagitions at & * w in Sections 3.3 through 3.5.

3.3. Determination of H, E, and D

Since the plane is subjected to uniform tension, p,
rarallel to the axis of x at infinity (see Fig. 1), the regu-
larity condition (2.23) is then sacisfied at infinity. This

can also be expressed in terms of stress function as

*See Equations (2.20) through (2.22).
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2 2
U= E§~ = %«:2 sinh%g sin’n = g%—(e2£+ ¢ %% - 201 - cos2n)

2¢

Since at £ + », both e

e2£' U becomes at § + =

and 2 can be neglected compared w:.th

TSRS I

1 2 2
- P 28 _ pc_ 2¢
U= T e 3 e cos2n (3.22)

From (3.1) and (2.4) through (3.7), U becomes at § + =«

sy ey

U = He2€ + Eezg cos2n (3.23)

Comparing (3.22) with (3.23), w: get

. 2
: H=E (3.24)
&2
E= - _El’-g— (3.25)

Notice that D is the coefficient of U4. Since U4 is inde-

F peacent of couple-stress effects, D 1s assumed to be in the

P \ *
same form as one obtained in the classical case [8], namely,

2
D=-P%-(cosh2€o - 1) (3.26)

3.4. Determination of the Relation Between B, F, and p by
Use of Cauchy-Riemann Egquations (2.13)

Using the expressions in (3.9) through (3.15) together

with (3.6) and (3.7), we have

*
See Equation (6.2495) on p. 544.
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hiadal

VZU = HVZUl + BV202 {(3.27)
202y _ _ 9292 _
¥ - L°V4Y = F(wl L4V vl) = le (3.28)

By direct substitution of (3.27) and (3.28) into (2.13), the

Cauchy-Riemann equations read

oY
1 _ _ _ 2.0 ,52 9 o2
F T < 2(1 V)L [HEE(V Ul) + BSH(V U2)] (3.29)
F P 2(1 - v)z [HaE(V U ) + Bag(v u, )] (3.30)

Using the results obtained in (3.9), (3.10), (3.14), and

(3.24), either (3.29) or (3.30) leads to the same expression

2
Z% = (1 - v)Q (Plg - p) (3.31)
c c
or
Fc2 c2
B = + Bg‘ {3.32)
16(1 - v)SL2 1

-~

3.5. Determination of C, F, and M

The traction conditions on the interior boundary will
now be used. On the boundary, ¢ = o and n varies within the

limit (0,2m).

a. Couple-stress H¢. On the boundary, expression

(3.20) becomes

23
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/ -
; ug(éo,n) = -—:%%71-2F 51nh2£o sin2n + M[(Fekz)']é .
CA o
-1} + cos?2t ) (se.) - (2 cosh2E ) (se.)" (3.33)
Vi o 2 o 2 ¢

- cos2n + %(sez) cos4nl

The boundary condition (2.22) 1s now applied by multiplying
(3.33) on both sides with se,, and by integrating the result-
ing expression with respect to n through the range (0,27).
The following expression results with the use of equations

developed in Appendix I1I (AIl.l) at n = 2, (AII.4) and
(AII.5) at n =0, p =1,2.
M = 2IF (3.34)

where

= 132‘2’ sinh2f_/! [ (Fek.) ' ]g [ 7 + cosh22Eo)

< p(2) L(2) :
+ (2 coshzgo)[r);o Bi2) Bi2) |+ ,2.( Z BiZ), (3.35)
|- L),
2r+6’ 7B ]}

b. 9gp on the boundary. After (3.18) is evaluated on

the boundary, further reduction is introduced by the use of

(3.24), (3.25), (3.26), and (3,32),

24



[Kggn}g=g = [Cl(% + cosh22€o) - Cz(coshzﬁo) + C3]sin2n

+ [-Cl(cosh2€°) + Cz(% + cosh22€o) + C4]sin4n

2! )
+ [1r -, cosh2£o]sin6n + [1rqsin8n

- [CS(% + cosh22£o)cosh2£°](se2)"

+ [C5(3 cosh22€o +<%)](se2)" cos2n

(3.36)
= (2. (3 cosh2E )] (se.)" cosan [CSJ( " cos6n
5(3 os o se2 cos -~ [ sez) coSs

- [CG(% + cosh22£o)](se2) + [56(2 cosh2€o)]°
'(se2) cos2n

g
- {1?J(se2) cos4n +[E7(% + cosh2250 ﬂ(sez)' sin2n

C
- [, (cosh2g )] (se,)' sindn + [1§J(se2)' sinén

where K is a constant and

c -48

Ql = - —_— F cosh2€o - Cle ° . 3)
8(1 - v)2

c2 c2 450
- Ez—(coshZEO - 1) - ?E-(e + 3)

3 25
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=2E 2 2t
_ o o
. = 6F(sinh22f_ - 1)
3 o)
64 = 3F(cosh2£o)
tg = 2FT (Fek,)
o

56 = 2FI‘[(Fek2)-]£=go sinhZEo
c7 = 2FI‘(Fek2)E=g

(o]

The boundary condition (2.21) is used by multiplying (3.36)
on both sides with se, and by integrating with respect to n
from 0 to 2m, Further simplification is achieved by using

(AXr.1l) with n=2,4,6,8; (AIlI.4) and (AII.5) with n = 0,

p=1,2; (AI1.6) withn =0, p=1,2,3; and (AII.7) with

n 0, p=1,2,3. All algebraic manipulations are routine

but cumbersome, thus omitted. The resulting expression is

bC + gF = m (3.37)
where
-4 -2¢
b =({-[(e ©°+ 3)(% + cosh22€o) +e °© coshZEO]Béz)
-4 -2
((e 9+ 3)(cosh2£o) +e o(% + cosh22£o)]B;2)
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e et e e o ety e 1t s o s et ~ ST TR
¢ \
-4z ~2¢ -2 !

- [%—(e O+ 3) +e © coshz. 18(2) - %e °Bé2"(3.33;
c cosh2-, 1 2 i (21
———————7 7[+ cosh 2 ) + 4 sainh 2" - GIBZ
8(1 - v)&

[c2 cosh22§o) } (23 1 c? cosh2g (2)]

- + 3 cosh2f B"‘—[

8(1 - v)el of"4 T v)!z
3 2
+ {2r (Fekz)&;:ﬁo} {[ (%— + cosh 25_,0) cosh2£o]-
\
© 27
‘[ f‘: (2: + 2)13;212/ J
——— oo
3 2 2 (2) (2)
+ [T + 3 cosh 2&01 [rgo (2r + 3) 2“_2 BZr+3]
(3.39)

3 (2), 2
+ [zcoshzgo] 2(8,"")
¢ T (2 + 5?2 3‘2)]

S0 2r+2 “2r+6

1 (2),(2) - (2)  .(2)
+ I["ng B, < + rgo (2R + 7) B2r+2 BZHB}

2 2 2

- [" + cosh 2£o]{ Z BériZ ér-)i—4]

[+9] B —‘ o
(2) (2 | _3 (2) L (2)
- 2[cosh2§ ][ ZO Bor+s BZr+6] Z'LEO Bor+2 B2r+8j }

27




C 1o 1 2
m = E%— [(e + 4 cosh2f - b)) (3 + cosh®2¢ }

2¢

+e © cosh..Eol Béz)
4£°
+ [(e 4+ 4 cosh2t - 1 cosh2§
o o
{3.40)

2E

+ e o(% + coshzzgo)]Béz)
; 4E 2

+ [%(e © ¢34 cosh2£o -1) +e ° ccshZEo}Béz)

2E
+ 1% 020

c. Ugg on the boundary. Equation (3.16) is evaluated

first or. the boundary. The following expressior results with

the substitution of Equations (3.24’, (3.25), (3.26), and

(3.32).
[K'o,,] = [Yl + Y, cosh2f  + vy (l + covhzzg ) - v,]
£EE . _ T 2 o 3'7 > o) 4
) E—Eo
. 2 3
E + [ -y, coshzgo - Yz(cosh 2&0 +'Z)
?
; - Y3(2 coshzﬁo) + Y6] cos2n
1 2
+ [Yl(? + cosh 250) + Yz(coshZEo)

\l
3
+ > + y5]cos4n

28
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Y .Y
+ [-Yl cosh2€o - 1-2—]c036n + [-41-] cos8n

o it an i aie ¥ 6

[77(% + coshzz-‘;o) coshZEo

- Yg (%. + cosh?ZEb)] (se,)’

AR ATHPOLT A T

...m..;
+

[77(3 c<>shzZ§o + %)

Y9(2 cosh2€°)] . (sez)' cos2n

R T L L

[y.(3 cosh2E) -Y9]( )' cos4n
Y7 2- CcOS o T Sez CcCOoS

bbb adhni o\ b

Y7 ,
+ [T] (sez) cosén

W R AT IR T TR E R TR AT e

+ [Y8 (%. + cosh22£o)] * (se,) sin2n

where K' is a constant and

A e e

+ (e °+3)C

29
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(3.41)

Y
- [Y8 coshZEol (se,) sin4n + [Ts-l@e/_) sinén = 0

. 2 2¢ .2 -2£
| R R ey A
| 16(1 - v)&

;,cz E-EE 4£o

Y, = =————————ps cosh2f + (8 cosh2f - e - 3)

K 2 4(1_\))912 o o
j

-4
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-~

2 ~4¢ 2 13 -4¢
Yy = Fe (2 +e %)+ g%-(4 +e %24+ ©
16(1 - v)L~©

-zgo

28
-3 9 + 3ce +D s'.inhZE'O

Y4 = 9% sinh2£o
Yg = 3; sinhZEo
Y = 3E sinh4£o
Yq = ZFI;[(Fekz)']£=£O
Yg = 2F;[(Fek2)']£=go

Yg = 2FF(Fek2) 31nh2§°

E=€

The boundary coriition (2.20) is applied with the multiplica-
tion of (3.41) by ce,, then by integrating the resulting

expression with respect ton from 0 to 2m. By using (AII.2)

and (AII.3) withn 2, 4, 6, 8; (AI1.8) withn=20, p =1,2,3;

and (AII.9) with n 0, p=1,2,3, the final expression re-

sults in

-~

kC + sF = t (3.42)

where

30
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A (2)
(o]

(3.43)

(2)
4

-450 ‘ZEO 2
+ (2e + 6) cosh2g  + 6e * cosh Zgo]
cosh2£0
1
i -4f
o . 2 3,1a(2)
+ (e + 3) (cosh 2£° + 2)]A2
-250 —250 -450
- [2e + e cosh™2¢ + (e + 3) - coshzgo]A
§ ~28 1, T4, 2) e 20 (2
g - le cosh2f + E(e + 3)]A6 - —g— 3 }
: 2 -4
‘ s = { < 5 -[%ﬂ+8 coshzzgo + (2 + e o)(1+2 cosh22g )
16(1 - v)g °
16(1 - v)g2. ., (2)
- (18 sinhZEO,( 5 J]Ao
c

[cosh2£o + 4(cosh2£o)(%-+ coshZZEJ

-4
+ (2+e 92 cosh2¢ )

2
16() - v) ¢
7 )]

C

Wy R e h s smy v e w

(3 sinhdg_)( a2

1 2 2 )
[(5 + cosh 250) + 4 cosh 2&0 + (1 + 5 e
+ (3 sinh2¢ X 16(1 - v)gz)]A(z)
: Eo ’ 2 4
?5 C
é
: 31

-4¢

(o]

)



G T TR TR R A T A B e A g TR T T TN e iy e e

R T

(2) _ (i,,(2)
- [2 cosh25°]A6 (4)A8 }

ri :.].'..¢ 2
+ 2..[(2 cosh 250)(51nh2£o)(Fek2)g=E

o

(7 + cosh? 2¢ )(Fek2 coshzgo]

E=¢

> (2) _(2) °
[r);o (2r + 2)2, ., B2r+2

+

[2(cosh2go)(sinh2£o)(Fekz)£=g
o

TGN

2
(3 cosh 2&0 )‘(Fekz)E g

(2) 5(2) ]

00
1
t3 g (2r + 2)A; L4 Borso

3 '
- 5(cosh2£o)(Fek2)€=€ ]

1l .
+ [5 81nh250(Fek2)
o o

E=¢

00

% . 1a(2)5(2) (2),(2) _ 1 (2) -(2)
; [2,%'8,% + 28,8, 5 rgo (2r + 2)A,°1, B,2) 1)

(2)g (E 2)g (2)

[}
+ 2F(Fek2) + 2A(

e-c (- (A

TH e o

(2) (2) 1 © (2) _(2)
t 34, v L re 2z,

Rl

QS R A e g
Lo
8o

¥

!

¥
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(2).(2) |

11 2, 1 [T A2 g2y s
* 213 + cosh zgo}lfzo Bars2 Barv2 7 2. Par Pore:

©

- %(coshzgo)[ y al2) gl2)

© 3
r=0 2r+6 “2r+-2 =

0 2r 2r+6J

-+
oo}

0 [e] "|

[ T al2) L(2) = (2),(2) ]}‘ ;

l\_o A B - Z-l A B (J"44)’
Lr=0 2r+8 T2r+2 =0 2r “2r+8 J

14

2 4t
le © - 2)+2G +e

[\ ]

C

(o]
e \17

t = - 8 coshzgo) coshzgo

-2& -4
+ (e + 2e © - 2e ° . 4) (1 + 2 cosh22£o)]Aéz)

+ [(-3e ©-4de ©+14e °+10) cosh2g

o

- 3 +e -8 cosh2£o)(cosh22£o + %)]Aéz)

SAY 4
- [(2 cosh2g - e © - 3)+ (e °+ 3)cosh2§o
285 2 (2) 2, 3.1 %,
+ (e - 10) cosh 2501A4 - le cosh2f + 7 + T e
2%
- (2) _ 1, “o _ (2)
4 cosh2t ]A. 7le 2)A, (3.45)

Equations (3.37) and (3.42) form two linear nonhomogene-

ous equations with two unknowns, C and F. They can readily be

solved by using Cramer's rule

33
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i - ms - gt
1 C =gz K (3.46)
1
_ bt -5k

F = B-s—-:—‘a"z (3.47)
i provided (bs - gk) = 0.
£ The stresses and couple-~stresses of this problem are the
? general expressions in (3.16) through (3.21), together with
:

the seven determined coefficients in (3.24) through (3.26),

(3.32), (3.34), (3.46), and (3.47).
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4.0 SPECIAL CASES OF THE SOLUTION

4.1. Infinite Plane with a Circular Hole Under Simple Uniform
Tension in the Presence of Couple-Stress (Fig. 5)

Y

A

free

stres{ir
N

EpOVIEY

En I'Q‘

PrEfetr

vty oy

—

go-)a:, c >0

e *o, a=b=a

TR RS TR T R RS

Figure 5.

T

Rewrite (3.6) and (3.7) as

U

g kg ok AR N S

U = ;H}- (czUl) + (B)(U,) + (c2c) c—g-
(4.1)
+ (U, + 5 )
C
o = (F) + (M) ———F ¥ (4.2)
(p,) 2

Q| e
SRY

TR R SO R A sy,

o T TR TR A T
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Solution of this specific problem can be obtained by use of the
simiting process described in Appendix III-(a). Equations (4.1)
and (4.2) are simplified and reduced, by use of the forms in

(AIII.6) and (AIII.7) and the basic theorem on lamits

2
.— U=§-r2(1—cos¢)-9—§_‘—znr
(4.3)
2 2

3 pa _a’(1l - 4)
E + STL 7 A)[ ; > + 1] cos 2¢

g r

5/
2. _ MK, [

i w = lpiR,A 4(1 2\))&2; - ZaR, sin 2¢ (4.4)
; r K (%)

which are identical to the forms obtained by [2].*

R M e SIS A S (=

4.2. Infinite Plane with a Crack under Simple Uniform Tension

(Fig. 6)

Solution to this problem can be obtained from the solu-

[ T WA

tion of the elliptical hole problem by taking go + 0, as

A

g,

desc.ibed in Appendix III-(b). The results in (AIII.1l9) show

that in this crack problem the couple-stress effect vanishes.

LS SOV TR

Furthermore, (AIII.19) shows that the solutions obtained here
4 ‘ are identical to the corresponding classical solutions which
can also be obtained by proceeding by the sam= limiting process
in [8]. Since couple-stresses are related to curvature and no

curvature is induced in this crack problem, it 1s clear that

*
There is a misprint for the expression of E in Equation
(38) in [2]. The correct form is E = (-patF)/(1 + F)Kl(a/l).

L
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couple-stress solutions should be the same as classical

solutions.

<

' L!_LL 1.¥

T O

Figure 6.

! 4.3. Classical Solution with Free Stresses on & = &5 (Fig. 7)

As & + 0, couple-stress solutions of the probklem in
Fig. 1 obtained 1in Section 3.0 reduce to classical solutions
of the problem in Fig. 7. The results in Equation (AIV.9) are

identical to the forms obtained ain [8].*

»
See Equations (6.2481), (6.2494), and (6.2495) on
pp. 543-544 of [8].
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free

stresse
¥l

L =0

Figure 7.
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5.0 DISCUSSION AND CONCLUSION
The solutions to this problem are given either as stress

and couple-stress functions in (3.6) and (3.7) or as stresses

and couple-stresses in (3.16) through (3.21), together with

the seven determined coefficients in (3.24), (3.25), (3.26),

W T AL )

(3.32), (3.34), (3.46), and (3.47). All series in (3.32),

! (3.24), (3.46), and (3.47) are shown to be convergent in

% Appendix IV. Special cases of the solutions are also obtained
by the proper limiting process as discussed in Section 4.0.
The three limiting cases are: (4.3) and (4.4) for the degen-
erate circle in Fig. 5, (AII1.19) for the degenerate crack in
Fig. 6, and (AIV.9) for the classical solution in Fig. 7.

The result obtained is a subclass of solutions to the
general self-equilibrated boundary-value problems. The selec-
tion of the Mathieus' functions and the form of weighting
functions in the boundary conditions (2.20), (2.21), and
(2.22) match a particular class of boundary-values, which
gratifyingly does reduce upon limiting processes to various

classical solutions (Figs. 6 and 7, and Fig. 5 for % = 0).

Here we summarize some important results about the
three limiting cases. The solutions for the degenerate circle
in (4.3) and (4.4) are shown to be identical to the results 1in
[2). The solutions for the degenerate crack in (AIII.l9) are
seen to be the same as those obtained in [8], by proceeding
according to the same limiting process. Since couple-stresses
are related to curvature and no curvature is induced in this

crack problem, it is clear that couple-stress solutions in

39




L e e T L o St - -

(AIII.19) should be the same as the classical solutions in [8].
The classical solutions for the general elliptical hole prob-
lem (Fig. 7) in (AIV.9) are obtained by taking £ -+ 0 from (3.6)

and (3.7) and they are identical to the results in [8].
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APPENDIX I

Solution of a Two-~dimensional Wave Eguation in Elliptical
Coordinates

The two-dimensional wave equation

¥ - 22V2V= 0

can be expressed in elliptical coordinates £ and n by using

(2.12) as
2 2
aY . 3—;-- 2q (cosh2f - cos2n)¥ = 0 (A1.1)
ot an

Using the method of separationof variables and the form of
solution of (AI.l) as Y(¢,n) = Y(E)é(n), (AI.1l) is reduced to
the following two ordinary differential equatiors known as

Mathieu's equations.

2y

Q

- (d + 2q cosh2g)¥Y = 0 (AI.2)

Al

o7}
N
©

+ (d + 2q cos2n)d = 0 (A1.3)

3

Here d 1s the separation constant.
From the solutions of (AI.2),* we choose the following

one

L]
See Section 8.30 on p. 165 and Section 13.30 [Egquation
(5) on p. 248] in Reference ([9].
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(p) =
Peky(£,-a) = —25= T A2 1 (v)IK (v)) (AL.4)
mal Lo x x r

From the solutions of (AI.3),* we select, for the current

problem,

se,(n,-q) = X_ (-1)*B
r=0

(2)

42 sin (2r + 2)n {(AI.5)

However, another Mathieu function ot (AI.3)

f cey(rmq) = - ¥ (-1)Tal?) cosarn (AI.6)
r=0

will be used in the text for evaluation of integrals.

Derivatives of sej(n,-q), Feky(&,-q)

i Since the series expressed in {(AI.4) and (Al.5) are

Trge

uniformly convergent** for real § and n, respectively, they

may be differentiated term by term.

A RPN b S P A

(p,) 'k = 3K_(v,)
d 2 T a(2) 2
splFek,(£,-q)] = A, " [e”1 _(v))——-
3E 2 TTAc()z) o 2 r''1’ T av,
: (AI.7)
] aI_(v,)
-£ 1
| B ST A
4

-
See Section 2.18 on p. 21 in Reference [9].
*

R R c Ll Y

*
See Sections 3.21 and 3.22 (on pp. 37-38) and Section
13.60 on p. 257 in Reference [9].
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%[sez(n.-q)l =)

9
9

2

—r‘7lse2(n.-q)] =

r=0

>

r=0

(-1)% (2r + 2)B!?

(_1)r+1

2r+2

o+ g2,

43

cos(2r + 2)n (AI.8)

sin(2xr + 2)n (AI.9;
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APPENDIX II1

*
Integrals Quoted from Reference [10]

ra2nw
| * se,sin2nnan - -1 2 5 (AII.1)
0
2%
jr cezdn = “Zﬂﬂéz) (AII.2)
0
27
J( ce2c052nndn = (-1)n+1nA;2’ (n > 1) (AI1.3)
0
2 2
jr (sez) dn=1 (AIT.4)
0

More Integrals Established

All the integrands in (AII.5) through (AII.9) can be
shown to be convergent absolutely and 'niformly for all real

* %
a hence term-by-term integration

1 by using Reference [11],
can be applied to all of them (Refzrence [ll]).:F By direct

1ntegrafion,“ the following results are obtained.

See Egquations (20.5.3) and (20.5.4) on p. 732.
See Theorem on p. 146,

See "Weierstrass's test" on p. 345.

See Theorem 3 on p. 341.

See Section 5 on p. 384 in Reference [9].
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1 72n 2
F"O [se, ,-(n,~q)]” cos2 pndn = %
( (p-3)
: 32 B(2n+2)B(2n+2) -
r=0 2r+2 2p-2r-2
1
3
_ o _(2n+2) _(2n+2) . s
rz=0 Bari2  Bopiars2 (p is odd, > 1) (AII.5)
1 (p-4)
2 p) (2n+2) _ (2n+2)
17 (2n+2)} B B
- >|B | - 2r+2 2p-2r-2
F 2l P i 320
£
© o (2042) _(2n+2) .
: v L, Pare2 Baprors2 (b is even, > 2) |
5
H

£ 27
L 1 .
; ;;j; [se2n+2(n.-q)] [seém’z(n:'qn sin2 pndn =
1 (AII.6)
_ P . © o(2n+2) _(2n+2)
=L p rzo BZr+2 2p+2r+2 (p > 1)
¥
27
N 1 " - —_
! 1'1'_]; seyn4a(nr-a)sel ,(n,-q) =
e & (2n+2) 2
¢ == L (2r+2)B2r+2
r=0
1 2m
T jc se2n+2(n,-q)se2n+2(n,-q) cos2pndn =
(AII.7)

A IR e T e N P R e
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el

a

%(p-3)
= ar _ 12 o(2n+2) _(2n+2)
X=o (2p - 2r - 3)° B, B2p-2r-2 (AII.7)
- 2 _(2n+2) _(2n+2) .
+ féo (2p + 2r + 1) B, 42 BZp+2r+2 (p is odd, > 1)
(p-4)
2 2
1l (2n+2) 2 _(2n+2) _(2n+2)
= pB + 2p - -
7 PBy r§=:0 (2p = 2r = 3)" By 45" Bypor-a
T (2n+2) _ (2n+2 .
}_;_0 (2p + 2r + 1) Byr+2 BZp+2r-)|—2 (p is even, > 2)
2 27
;/(; ce2n+2m,-q)se2n+2(n.-q) sin2pndn =
(AII.S8)
(2n+2) L(2n+2) _ © ,(2n+2) _(2n+2)
A2r+2p S2r+2 fio Aor+2 B2r+2p (p > 1)
-l—[znce (n,-q) se! (n,-q)dn =
m JO 2n+2 N9 2n+2 \NT9)AN
(2n+2) (2n+2)
(2r +2) Ay 2™ Borio
2 27
] _
T ,/; Ceon+2(Nr-a)s€y, 5 (N,-q) cos2 pndn =
1
E(P'l)
A} -1\ P (2n+2) (2n+2)
L, CDP2r e A Barer
- (AII.9)
-1y P (2n+2) (2n+2) .
+ 2;0 (=1)% (2r + 2) A2p+2r+2 By 4o (p is cdd, > 1)
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APPENDIX III
Let r and r' represent the semi-major axis and the semi-
minor axis, respectively, for any confocal ellipse. By using

(2.8) r,r' can be expressed in terms of c and ¢

3 r=Xx= * coshg, at n=0,m, y =0

(AIXI.1)
r' =y = *c sinh§, at N = %, %m, x=20
1
% ; By definition
g : c = re (AI1I.2)
L
% From (AIII.l) and (AIII.2), we have
cosh§ = e—1 (AIII.3)

Some Useful Limiting Forms When the Ellipse Tends to a Circle
with e >~ 0

For fixed r, as e » 0, the confocal ellipse of the
semi-major axis r, tends to a circle with f as radius, and the
confocal hyperbolas become radii of the circle, with n = ¢
(see Figure 3(b)). By use of (AITI.2) and (AIII.3), it is
clear that e + 0 co*rv.sponds to ¢ » 0 and § +» «», Since

ql/2 = k = % % . ¢ * 50rk »0as c~+ 0. By means of these

_——

. ' . . |
equivalent limitiry processes, we obtain the rfollowing

VEURAGT B, g n s, S paen = NGRS CRE dve T AP m

lim & ceb)tt = 0 (n=1,2,3) (AIII.4)
e+0

*
See Appendix I on p. 367-370 ir Reference [9].

e R R R Foun & RN SRR
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éilg[w FEkzj = Kz(i-) (AIII.S)

lim|-— (Fek )q r iL[K £~] (AIII.6)
e*O[(pZYT 2° | or 2(2)

lim(sez) = sin2¢ (AIII.7)
e+0
lim(cez) = cos2¢ (A1TI.8)
e~+0

For the specific ellipse of the semi-major axis a with ¢ = go,

(AIII.7) and (AIII.8) still hoid while (AIII.4) through

(AIII.6) take the following forms.

1l go n in
lim 5 ce = a- (n = 1,2,3,.--) (AIII-Q)
e+0
.
1im[1p—")—.- (Feky) ., | = K, (%) (AIII.10)
2

e+0 o)

J

1im{7p—;y-,- (Fek, ézgo‘ {r %[Kz (%”} (AIII.11)

e-+0

Some Useful Limiting Forms When the Ellipse Tends to a Crack
with e » 1 or £, + 0.

The ellipse with the semi-major axis, a = ¢ cosh £t and
the semi-minor a.is, b = ¢ sinhio, tends to the inter-focal
line of length 2c, when e + 1, while a - ¢, b » 0 (Figure 3(b)).
By use of (AIII.3) with & = Eo, e + 1 is seen to be equivalent
to £ > 0. The following useful limiting quantities are

obtained by direct computation.
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1lim e =1 n=1.2,3,...) (AXIX.12)

1
o

11m[51nh2£o]
EO*O
(ATIIX.13)

]
[

1im[cosh2£ol
€o+0

Lim | (Fek.) | = Fek,(0,-q) (AIIT.14)
2) e=g | 2
EO*O:' O,

1 p,ce, (0,q)
' | = 22

v
lim |(Fek,) |,_ = Fek <0,-q)=-—7——— (AITI.15)
eo+0[ 2[5, 2 ma %)

Limiting Values of Solutions as e > 0

By means of the forms in (AIII.4) through (AIII.1ll), the
limitang values of the modified forms of Ui (L=1,2,...,5) in

(3.1) and the modified forms of wl,w in (3.4) and (3.5) are

2
obtained as follows

lim[czUl] = 4r2 \
e>0

lim{U
e~>0

2] cos2¢

Uyl
lim[m% = —lf cos¢
e*0Lc™ - 4r

llm[U4] &n r > (AIII.16)

e+0

4r2 cos2¢

1im[c2u51
e-0
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[ 2v
lim _fl = 35 sin2¢
e+0Lp r
Lin[ <L v\ = Ky[E] sin2e
eso P20 21 21X )

By use of the forms in (AIII.4) through (AIII.1ll), the limit-

ing values of D in (3.26), B in (3.32), cC in (3.46)," F in

e

(3.47),**'+ I‘/c2 in (3.35), and M in (3.34) are obtained as
follows.
a’ )
lim [D] = - Bi—-
e+0
g 2 ata -
lim[d“C] = - P—(-]__+—A')—_
e+0
: 2,2
. 4(1 - v)a™L'p
lim([F] =
ar0 (1 + A)
_pa®
| Lim(] = P& > (AIII.17)
e+0
; limrjl}= - =L A
e»olc2 ®2)" 16ar(1 - K, 2

*

c2p is obtained by multiplying (3.46) by c2.
*

*F is obtained by multiplying (3.47) by c2/2.

+b, g, M, n, s, and t in (3.46) 2re expressed in (3.38),
(3.39), (3.40), (3.43), (3.44), and (3.45), respectively.

*F/cz

G VAT Y (8 S U . NS85 g KW SR B s ¢ e R €

is obtained by dividing (3.35) by c2.

“M is obtained by multiplying (3.34) by (pz)'/n.
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limM] = - — P20 __
e+0 (l + V)Kl I
where
A = 8(1 - v)
K, 7
a a’'o
4 + T + 2 T X a
12 /
Since, from (3.24) and (3.25), we have H/c2 = - E/c2 = p/lé6

which is a constant, the following limiting processes are

obvious.
as H P
lim — =
e+0 02 16
(AIIT.18)
lim & = - &
e+0 c

Limiting Values of Solutions as &o * 0

By means of the forms in (AIII.12) through (AIII.l5),
the limiting values of H in (3.24), B in (3.32), C in (3.46),
D in (3.26), E in (3.25), F in (3.47), and M in (3.34) can be

obtained as follows.

o2
lim H = 1imB=§-6—
£0+0 €O+0
o2
lim C = 1imE=-El’-6—
£ =0 £ +0
o} o]

{AITI.13)
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£ *0 *0

limb=20
€ +0
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APPENDIX IV

Some Useful Limitiny, Forms as g +» ©°

/ \
Since ql’z = %;% = k, for fixed ¢, * * 0 implies that

q > ®or k * ®. The following limiting quan: .ties are

obtained by using [9].*

(2)
A
lim —2

2 (
i 0 AO

=2(-1)F (r =1,2,3,...) (AIV.>)

r
2)

: (2)
; . B2r+2
lim

= -5 + 1) (r =1,2,3,...) (AIV.2)
L+0 B,

lim af?
2+0 2r

!

o

)
n

0,1,2,3,...) (AIV.3)

(2)
B2r

|
(=

lim (r =1,2,3,...) (AIV.4)

S d)

5(2) A(2)

. o)
= lim —=5

lim
120 5.0

2+0 A

=1 (AIV.5)

* %
For large arguments, z, we have

: I (z) ~ =— ~ 1'(2) (AIV.6)
% n '—ﬁz n

: -z

; K (z) ~ € . —K;(z) (AIV.7)
: vax/m

*see Section 3.34 on p. 47.
**See Equations (9.7.1) to (9.7.4) on pp. 377-378 in [9].
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Substituting (AIIX.6) and (AIII.7) into (AI.4) and (AI.7) for
the large value of q (small value of &), and taking the limit

of the resulting form with ¢ + 0, we obtain

[Fek2]£=£ sinhgo
1im e °_ = 5 (AIV.8)
2+0 2 E=E

All the series forms in expression g in (3.39) and s in (3.44)

can be shown to be absolutely and uniformly convergent.* As

such, by use of [11],** (AIV.3) and (AIV.4), all these series

tend to be zero as £ + 0. Based upon this argument and

(AIV.8), it is seen that in g/Béz) and s/Aéz), terms contain-

ing £ as denominators dominate for the small value of %.

(2) (2)

Hence, other terms in g/B2 and s/Ao can be neglected as

compared with terms having £ as denominators, for % -+ 0.

Limiting Values of Solutions Like £ + 0

By use of (AIV.1l) through (AIV.8), the limiting value
of H in (3.24), B in (3.32), C in (3.46), D in (3.26), E in

(3.25), F in (3.47), and M in (3.34) can be obtained as

follows.
lim [H] = %g pc2
1-+0
2¢ \
Lim (5] = £ pc’|2e © - 1
2+0

*
See Section 3.Z2 on p. 38 in [9].

* %
See Theorem 2 on pp. 339-3:0.




o e e e P e L - W

- e m————en 4 T

AN Ve A A S 1 L YA g

R AP

REFERENCLES

1.

10.

ll.

Mindlin, R. D., and Tiersten, H. F., "Effects of Couple-
Stresses in Linear Elasticity,” Archives for
Rational Mechanics and Analysis, 11, 1962,
pp. 415-448.

Mindlin, R. D., "Inflvence of Couple-Stresses on Stress
Concentration,” Exp. Mechanics, Vol. 3, Jan. 1963,
pp. 1-7.

Weitsman, Y., "Couple-Stress Effects on Stress Concen-
tration Around a Cylindrical Inclusion in a Field
of Uniaxial Tension," J. App. Mech., June 1965,
pp. 424-428.

Weitsman, Y., "Strain Gradient Effects Around Cylindri-
cal Inclusions and Cavities in i Field of Cylindri-
cally Symmetric Tension," J. App. Mech., March 1966,
pp. 57-67.

Muki, R., and Sternberg, E., "The Effects of Couple-
Stresses on the Stress Concentration Around a Crack,"
Int. J. Solids Struct., Vol. 3, 1967, pp. 69-95.

Sternberg, E., Couple-Stresses and Singular Stress Con-
centrations in Elastic Solids, ONR Report NR-064-431,
No. 12, Sept., 1967.

Ju, F. D., and Hsu, Y. C., Review of Couple-Stress Theory
of Elasticity and Elastic Theory of Fracture Mech-
anics, AFOSR 69-1903 TR, June 1969, University of
New Mexico Technical Report ME-40(69)AFOSR-D74.

Coker, E. G., and Filon, L. N. G., A Treatise on Photo-
Elasticity, Cambridge University Press, 1931.

McLachlan, N. W., Theory and Application of Mathieu
Functions, Dover Publications, Inc., New York, 1964.

Abramowitz, M., and Stegun, I. A., eds., Handbook of
Mathematical Functions, National Bureau of Standards,
Applied Mathematics Series-55, U.S. Government Print-
ing Office, Washington, D.C., 1964, 3rd Printing,
March 1965.

Knopp, K., Theory and Application of Infinite Series,
Blackie and Sons Limited, London and Glasgow, 1957.




